
First Python Notebook

unknown

Jul 17, 2023

CHAPTERS

1 What you will learn 3

2 Who can take it 5

3 Table of contents 7

i

ii

First Python Notebook

A step-by-step guide to analyzing data with Python and the Jupyter notebook.

CHAPTERS 1

First Python Notebook

2 CHAPTERS

CHAPTER

ONE

WHAT YOU WILL LEARN

This textbook will teach you:

• Just enough of the Python computer-programming language to read, filter, join, group, aggregate and rank struc-
tured data with pandas, a popular open-source tool for statistical analysis

• How to record, remix and republish your work using Project Jupyter, a browser-based interface for writing code
that is emerging as the standard for generating reproducible research

• How to explore data using using Altair, a Python package that offers a simple, structured grammar for generating
charts.

3

https://www.python.org/
http://pandas.pydata.org/
http://jupyter.org/
https://altair-viz.github.io/

First Python Notebook

4 Chapter 1. What you will learn

CHAPTER

TWO

WHO CAN TAKE IT

This course is free. If you’ve tried Python once or twice, have good attitude and know how to take a few code crashes
in stride, you are qualified.

5

First Python Notebook

6 Chapter 2. Who can take it

CHAPTER

THREE

TABLE OF CONTENTS

3.1 JupyterLab

A Jupyter notebook is a browser-based interface where you can write, run, remix and republish code.

It is free software you can install and run like any other open-source library. It is used by scientists, scholars, investors
and corporations to create and share their research.

It is also used by journalists to develop stories and show their work. Examples published by past teachers of this class
include:

• “As Opioid Crisis Ramped Up, Pills Flowed Into Vermont by the Millions” by Andrea Suozzo

• “A frenzy of well drilling is depleting aquifers in California farmland.” by Gabrielle LaMarr LeMee

• “What it’s like to go to school when dozens have been killed nearby” by Iris Lee

• “City of Chicago Parking and Camera Ticket Data” by David Eads

You can find hundreds of other examples on GitHub, including work by Buzzfeed, ProPublica, The Economist,
POLITICO, The Markup and the Los Angeles Times.

There are numerous ways to install and configure Jupyter notebooks. Since this tutorial is designed for beginners,
it will demonstrate how to use JupyterLab Desktop, a self-contained application that provides a ready-to-use Python
environment with several popular libraries bundled in. It can be installed on any operating system with a simple point-
and-click interface.

Note: Advanced users like to take advantage of Python’s power tools to have more control over when and where code
is installed on their system. Readers interested in the techniques preferred by the pros should consult our appendix. It
requires use of your computer’s command-line interface.

3.1.1 Install JupyterLab Desktop

The first step is to visit JupyterLab Desktop’s homepage on GitHub in your web browser.

7

http://jupyter.org/
http://nbviewer.jupyter.org/github/robertodealmeida/notebooks/blob/master/earth_day_data_challenge/Analyzing%20whale%20tracks.ipynb
http://nbviewer.jupyter.org/github/nealcaren/workshop_2014/blob/master/notebooks/5_Times_API.ipynb
https://github.com/rsvp/fecon235/blob/master/nb/fred-debt-pop.ipynb
https://github.com/asuozzo/arcos-opioid-analysis-vt
https://github.com/datadesk/groundwater-analysis
https://github.com/datadesk/highschool-homicide-analysis
https://github.com/propublica/il-tickets-notebooks
https://github.com/search?q=language%3A%22Jupyter+Notebook%22&type=Repositories&ref=advsearch&l=Jupyter+Notebook&l=&s=updated&o=desc
https://github.com/BuzzFeedNews/2016-01-tennis-betting-analysis/blob/master/notebooks/tennis-analysis.ipynb
https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb
https://github.com/theeconomist/big-mac-data/blob/master/Big%20Mac%20data%20generator.ipynb
https://github.com/The-Politico/politico-2018-district-similarity-maps/blob/master/demographic_similarity.ipynb
https://github.com/the-markup/investigation-isp
https://github.com/datadesk/notebooks
https://github.com/jupyterlab/jupyterlab-desktop
https://github.com/jupyterlab/jupyterlab-desktop#download

First Python Notebook

Scroll down to the documentation below the code until you reach the Download section.

8 Chapter 3. Table of contents

https://github.com/jupyterlab/jupyterlab-desktop#download

First Python Notebook

Then pick the link appropriate for your operating system. The installation file is large so the download might take a
while.

Find the file in your downloads directory and double click it to begin the installation process. Follow the instructions
presented by the pop-up windows, sticking to the default options.

Warning: Your computer’s operating system might flag the JupyterLab Desktop installer as an unverified or
insecure application. Don’t worry. The tool has been vetted by Project Jupyter’s core developers and it’s safe to use.

If your system is blocking you from installing the tool, you’ll likely need to work around its barriers. For instance,
on MacOS, this might require visiting your system’s security settings to allow the installation.

3.1. JupyterLab 9

https://www.wikihow.com/Install-Software-from-Unsigned-Developers-on-a-Mac

First Python Notebook

3.1.2 Open a Python 3 notebook

Once the program is installed, you can accept the installation wizard’s offer to immediately open the program, or you
can search for “Jupyter Lab” in your operating system’s application finder.

That will open up a new window that looks something like this:

Hit the “Python 3” button in the launcher panel on the right and you’re ready to move on to our next chapter.

3.2 Notebooks

You should see a new panel with an empty box at the top. That means you are all set up and ready to write Python. If
you‘ve never done it before, you can remain calm. We can start out slow with some simple math.

Type the following into the box, then hit the play button in the toolbar above the notebook or hit SHIFT+ENTER on your
keyboard. The number four should appear.

2+2

4

There. Not so bad, right? You have just written your first code. When you execute a cell, the text inside it will be
processed and the output will be displayed below the cell. If the cell contains code, it will be run by the Jupyter

10 Chapter 3. Table of contents

First Python Notebook

notebook’s underlying programming language. In the jargon of Python, you have entered two integers and combined
them using the addition operator.

Now try writing in your own math problem in the next cell. Maybe 2+3 or 2+200. Whatever strikes your fancy. After
you’ve typed it in, hit the play button or SHIFT+ENTER. This to-and-fro of writing Python code in a cell and then running
it with the play button is the rhythm of working in a notebook.

If you get an error after you run a cell, look carefully at your code and see that it exactly matches what’s been written
in the example. Here’s an example of a error that I’ve added intentionally:

2+2+

File "/tmp/ipykernel_952/4150814810.py", line 1
2+2+

^
SyntaxError: invalid syntax

Don’t worry. Code crashes are a normal part of life for computer programmers. They’re usually caused by small typos
that can be quickly corrected.

2+2+2

6

The best thing you can do is remain calm and carefully read the error message. It usually contains clues that can help
you fix the problem.

Over time you will gradually stack cells to organize an analysis that runs down your notebook from the top. A simple
example is storing your number in a variable in one cell:

number = 2

Then adding it to another value in the next cell:

number + 3

5

Run those two cells in succession and the notebook should output the number five.

Change the number value to 3 and run both cells again. Instead of 5, it should now output 6.

So, first this:

number = 3

Then this:

number + 3

6

Now try defining your own numeric variable and doing some math with it. You can name it whatever you want. Want
to try some other math operations? The - sign does subtraction. Multipication is *. Division is /.

Sometimes it is helpful to describe what the code is doing in case you want to share it with a colleague or return to it
after some time. You can add comments in the cell by putting a hash # in front of the text. So, for example, we could
use a comment to add extra information about the number variable.

3.2. Notebooks 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/operator.html#mapping-operators-to-functions

First Python Notebook

This is a random number
number = 3

To add a cell in a Jupyter notebook, you can use the “Insert” menu at the top of the page and select “Insert Cell Above”
or “Insert Cell Below”. Alternatively, you can use the keyboard shortcut “a” to insert a cell above the current cell or
“b” to insert a cell below the current cell. You can also use the “+” button in the toolbar above the notebook to insert
a cell below the current cell.

To remove a cell, you can select the cell and press the “dd” key. Alternatively, you can use the “Edit” menu at the top
of the page and select “Delete Cells” or you can use the “scissors” button in the toolbar above the notebook to delete
the selected cell. Note that when you delete a cell, everything in that cell will be lost and it cannot be undone.

Note: Cells can contain variables, functions or imports. If you’ve never written code before and are unfamiliar with
those terms, we recommend “An Informal Introduction to Python” and subsequent sections of python.org’s official
tutorial.

Everything we have done so far has been in code cells, the default cell type. We can also make text cells, which are
useful for giving our notebooks some structure and organization. You can do this by manipulating the pulldown menu
in the toolbar directly above the notebook. By default the input is set to “Code.” Click the dropdown arrow and change
it to “Markdown,” a markup language for formatting text similar to HTML.

These cells allow you to create headers, write descriptions, add links and more to add context to your code. “The
Ultimate Markdown Guide” is a reference on all of the styling that you can draw from. For now, let’s try adding a
heading and a bulleted list.

Hashes make headings
- Dashes make
- Bulleted lists

3.2.1 Hashes make headings

• Dashes make

• Bulleted lists

Once you’ve got the hang of making the notebook run, you’re ready to introduce pandas, the powerful Python analysis
library that can do a whole lot more than add a few numbers together.

3.3 Pandas

Python is filled with functions to do pretty much anything you’d ever want to do with a programming language: navigate
the web, parse data, interact with a database, run fancy statistics, build a pretty website and so much more.

Creative people have put these tools to work to get a wide range of things done in the academy, the laboratory and even
in outer space. Some are included in a toolbox that comes with the language, known as the standard library. Others
have been built by members of Python’s developer community and need to be downloaded and installed from the web.

12 Chapter 3. Table of contents

https://docs.python.org/3/tutorial/introduction.html
https://en.wikipedia.org/wiki/Markdown
https://medium.com/analytics-vidhya/the-ultimate-markdown-guide-for-jupyter-notebook-d5e5abf728fd
https://medium.com/analytics-vidhya/the-ultimate-markdown-guide-for-jupyter-notebook-d5e5abf728fd
http://docs.python-requests.org/
http://docs.python-requests.org/
https://docs.python.org/2/library/csv.html
http://www.sqlalchemy.org/
https://www.scipy.org/
https://www.djangoproject.com/
https://www.crummy.com/software/BeautifulSoup/
http://www.nltk.org/
https://pillow.readthedocs.io/en/stable/
https://www.python.org/about/success/

First Python Notebook

One third-party tool that’s important for this class is called pandas. It was invented for use at a financial investment
firm and has become the leading open-source library for accessing and analyzing data in many different fields.

3.3.1 Import pandas

Create a new cell at the top of your notebook where we will import pandas for our use. Type in the following and hit
the play button.

import pandas

If nothing happens, that’s good. It means you have pandas installed and ready as to use.

Note: Since pandas is created by a third party independent from the core Python developers, it wouldn’t be installed
by default if you followed our our advanced installation instructions.

It’s available to you because the JupyterLab Desktop developers have pre-selected a curated list of common utilities to
include with the package, another reason to love their easy installer.

3.3. Pandas 13

http://pandas.pydata.org/
https://www.aqr.com/
https://www.aqr.com/

First Python Notebook

Return to the cell with the import and rewrite it like this.

import pandas as pd

This will import the pandas library at the shorter variable name of pd. This is standard practice in the pandas commu-
nity. You will frequently see examples of pandas code online using pd as shorthand. It’s not required, but it’s good to
get in the habit so that your code is more likely to be quickly understood by other computer programmers.

Note: In Python, a variable is a way to store a value in memory for later use. A variable is a named location in the
computer’s memory where a value can be stored and retrieved. Variables are used to store data values, such as numbers,
strings, lists, or objects, and they can be used throughout the program to refer to the stored value.

To create your own variable in Python, you use the assignment operator (=) to assign a value to a variable. The variable
name is on the left side of the assignment operator and the value is on the right side.

3.3.2 Conduct a simple data analysis

Those two little letters contain dozens of data analysis tools that we’ll use in future lessons. They can read in millions
of records, compute advanced statistics, filter, sort, rank and do just about anything else you’d want to do with data.

We’ll get to all of that soon enough, but let’s start out with something simple.

Let’s make a list of numbers in a new notebook cell. To keep things simple, enter all of the even numbers between zero
and ten. Name its variable something plain like my_list. Press play.

my_list = [2, 4, 6, 8]

You can do cool stuff with any list, even calculate advanced statistics, if you’re a skilled Python programmer who is
ready and willing to write a big chunk of code. The advantage of pandas is that it saves time by quickly and easily
analyzing data with hardly any computer code at all.

In this case, it’s as simple as converting that plain Python list into what pandas calls a Series. Here’s how to make it
happen in your next cell. Let’s stick with simple variables and name it my_series.

my_series = pd.Series(my_list)

Once the data becomes a Series, you can immediately run a wide range of descriptive statistics. Let’s try a few.

How about summing all the numbers? Make a new cell and run this. It should spit out the total.

my_series.sum()

20

Then find the maximum value in the next.

my_series.max()

8

The minimum value in the next.

my_series.min()

14 Chapter 3. Table of contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://en.wikipedia.org/wiki/Descriptive_statistics

First Python Notebook

2

How about the average, which also known as the mean?

my_series.mean()

5.0

The median?

my_series.median()

5.0

The standard deviation?

my_series.std()

2.581988897471611

Finally, all of the above, plus a little more about the distribution, in one simple command.

my_series.describe()

count 4.000000
mean 5.000000
std 2.581989
min 2.000000
25% 3.500000
50% 5.000000
75% 6.500000
max 8.000000
dtype: float64

Before you move on, go back to the cell with your my_list variable and change what’s in the list. Maybe add a few
more values. Or switch from evens to odds. Then rerun all the cells below it. You’ll see all the statistics update to
reflect the different dataset.

If you substituted in a series of 10 million records, your notebook would calculate all those same statistics without you
needing to write any more code. Once your data, however large or complex, is imported into pandas, there’s little limit
to what you can do to filter, merge, group, aggregate, compute or chart using simple methods like the ones above. In
the chapter to come we’ll start doing just using that with data from a real Los Angeles Times investigation.

3.4 Data

In 2018, the Los Angeles Times published an investigation headlined, “The Robinson R44, the world’s best-selling
civilian helicopter, has a long history of deadly crashes.”

3.4. Data 15

https://www.latimes.com/projects/la-me-robinson-helicopters/
https://www.latimes.com/projects/la-me-robinson-helicopters/

First Python Notebook

It reported that Robinson’s R44 led all major models with the highest fatal accident rate from 2006 to 2016. The analysis
was published on GitHub as a series of Jupyter notebooks.

The findings were drawn from two key datasets:

1. The National Transportation Safety Board’s Aviation Accident Database

2. The Federal Aviation Administration’s General Aviation and Part 135 Activity Survey

After a significant amount of work gathering and cleaning the source data, the number of accidents for each helicopter
model were normalized using the flight hours estimates in the survey. For the purposes of this demonstration, we will
read in tidied versions of each file that are ready for analysis.

The data are structured in rows of comma-separated values. This is known as a CSV file. It is the most common way
you will find data published online. The pandas library is able to read in files from a variety formats, including CSV.

import pandas as pd

16 Chapter 3. Table of contents

https://github.com/datadesk/helicopter-accident-analysis
https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
https://www.faa.gov/data_research/aviation_data_statistics/general_aviation/
https://en.wikipedia.org/wiki/Comma-separated_values

First Python Notebook

3.4.1 The read_csv method

Scroll down to the first open cell. There we will import the first CSV file using the read_csv function included with
pandas.

pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/
→˓src/_static/ntsb-accidents.csv")

event_id ntsb_make ntsb_model ntsb_number \
0 20061222X01838 BELL 407 NYC07FA048
1 20060817X01187 ROBINSON R22 BETA LAX06LA257
2 20060111X00044 ROBINSON R44 MIA06FA039
3 20060419X00461 ROBINSON R44 II DFW06FA102
4 20060208X00181 ROBINSON R44 SEA06LA052
..
158 20160711X32921 BELL HELICOPTER TEXTRON CANADA 407 ERA16FA248
159 20160804X45514 SCHWEIZER 269C 1 CEN16FA304
160 20160404X74644 BELL 206 ERA16FA144
161 20160507X31120 AIRBUS AS350 ANC16FA023
162 20160612X85856 ROBINSON HELICOPTER COMPANY R44 II CEN16FA215

year date city state country total_fatalities \
0 2006 12/14/06 00:00:00 DAGSBORO DE USA 2
1 2006 08/10/06 00:00:00 TUCSON AZ USA 1
2 2006 01/01/06 00:00:00 GRAND RIDGE FL USA 3
3 2006 04/13/06 00:00:00 FREDERICKSBURG TX USA 2
4 2006 02/06/06 00:00:00 HELENA MT USA 1
..
158 2016 07/11/16 00:00:00 HICKORY KY USA 1
159 2016 08/03/16 00:00:00 JEANERETTE LA USA 1
160 2016 04/04/16 00:00:00 PIGEON FORGE TN USA 5
161 2016 05/06/16 00:00:00 SKAGWAY AK USA 1
162 2016 06/12/16 00:00:00 JONESBORO AR USA 1

latimes_make latimes_model latimes_make_and_model
0 BELL 407 BELL 407
1 ROBINSON R22 ROBINSON R22
2 ROBINSON R44 ROBINSON R44
3 ROBINSON R44 ROBINSON R44
4 ROBINSON R44 ROBINSON R44
..
158 BELL 407 BELL 407
159 SCHWEIZER 269 SCHWEIZER 269
160 BELL 206 BELL 206
161 AIRBUS 350 AIRBUS 350
162 ROBINSON R44 ROBINSON R44

[163 rows x 13 columns]

Warning: You will need to precisely type in the URL to the file. Feel free to copy and paste it from the example
above into your notebook.

3.4. Data 17

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

First Python Notebook

After you run the cell, you should see a big table output to your notebook. It is a “DataFrame” where pandas has
structured the CSV data into rows and columns, just like Excel or other spreadsheet software might. Take a moment to
look at the columns and rows in the output, which contain the data we’ll use in our analysis.

Note: On the left-hand side, you’ll see an bolded number incrementing up from zero that present in our source data
file. This what pandas calls the index. It is a separate column created automatically that is used to identify each row.
The index is not considered part of the data, but is used to reference the rows of the DataFrame or Series in advanced
operations that are beyond the scope of this class.

A major advantage of Jupyter over spreadsheets is that rather than manipulating the data through a haphazard series of
clicks and keypunches we will be gradually grinding it down using a computer programming script that is transparent
and reproducible.

In order to do more with your DataFrame, we need to store it so it can be reused in subsequent cells. We can do this by
saving in a variable, just as we did in with our number in chapter two.

Go back to your latest cell and change it to this. Rerun it.

accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")

You shouldn’t see anything. That’s a good thing. It means our DataFrame has been saved under the name
accident_list, which we can now begin interacting with in the cells that follow.

We can do this by calling “methods” that pandas makes available to all DataFrames. You may not have known it at the
time, but read_csv is one of these methods. There are dozens more that can do all sorts of interesting things. Let’s
start with some easy ones that analysts use all the time.

3.4.2 The head method

To preview the first few rows of the dataset, try the head method. Add a new cell and type this in and hit the play button
again.

accident_list.head()

event_id ntsb_make ntsb_model ntsb_number year date \
0 20061222X01838 BELL 407 NYC07FA048 2006 12/14/06 00:00:00
1 20060817X01187 ROBINSON R22 BETA LAX06LA257 2006 08/10/06 00:00:00
2 20060111X00044 ROBINSON R44 MIA06FA039 2006 01/01/06 00:00:00
3 20060419X00461 ROBINSON R44 II DFW06FA102 2006 04/13/06 00:00:00
4 20060208X00181 ROBINSON R44 SEA06LA052 2006 02/06/06 00:00:00

city state country total_fatalities latimes_make latimes_model \
0 DAGSBORO DE USA 2 BELL 407
1 TUCSON AZ USA 1 ROBINSON R22
2 GRAND RIDGE FL USA 3 ROBINSON R44
3 FREDERICKSBURG TX USA 2 ROBINSON R44
4 HELENA MT USA 1 ROBINSON R44

latimes_make_and_model
0 BELL 407
1 ROBINSON R22
2 ROBINSON R44

(continues on next page)

18 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html
https://en.wikipedia.org/wiki/Method_(computer_programming)
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.head.html

First Python Notebook

(continued from previous page)

3 ROBINSON R44
4 ROBINSON R44

It does the first five by default. If you want a different number, submit it as an input.

accident_list.head(1)

event_id ntsb_make ntsb_model ntsb_number year date \
0 20061222X01838 BELL 407 NYC07FA048 2006 12/14/06 00:00:00

city state country total_fatalities latimes_make latimes_model \
0 DAGSBORO DE USA 2 BELL 407

latimes_make_and_model
0 BELL 407

3.4.3 The info method

To get a look at all of the columns and what type of data they store, add another cell and try the info method. Look
carefully at the results and you’ll see we have 163 fatal accidents to review.

accident_list.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163 entries, 0 to 162
Data columns (total 13 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 event_id 163 non-null object
1 ntsb_make 163 non-null object
2 ntsb_model 163 non-null object
3 ntsb_number 163 non-null object
4 year 163 non-null int64
5 date 163 non-null object
6 city 163 non-null object
7 state 162 non-null object
8 country 163 non-null object
9 total_fatalities 163 non-null int64
10 latimes_make 163 non-null object
11 latimes_model 163 non-null object
12 latimes_make_and_model 163 non-null object
dtypes: int64(2), object(11)
memory usage: 16.7+ KB

Now that you’ve got some data imported, we’re ready to begin our analysis.

3.4. Data 19

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.info.html

First Python Notebook

3.5 Columns

We’ll begin with the latimes_make_and_model column, which records the standardized name of each helicopter that
crashed. To access its contents separate from the rest of the DataFrame, append a pair of flat brackets with the column’s
name in quotes inside.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")

accident_list['latimes_make_and_model']

0 BELL 407
1 ROBINSON R22
2 ROBINSON R44
3 ROBINSON R44
4 ROBINSON R44

...
158 BELL 407
159 SCHWEIZER 269
160 BELL 206
161 AIRBUS 350
162 ROBINSON R44
Name: latimes_make_and_model, Length: 163, dtype: object

That will list the column out as a Series, just like the ones we created from scratch earlier. Just as we did then, you
can now start tacking on additional methods that will analyze the contents of the column.

Note: You can also access columns a second way, like this: accident_list.latimes_make_and_model. This
method is quicker to type, but it won’t work if your column has a space in its name. So we’re teaching the universal
bracket method instead.

3.5.1 Count a column’s values

In this case, the column is filled with characters. So we don’t want to calculate statistics like the median and average,
as we did before.

There’s another built-in pandas tool that will total up the frequency of values in a column. The method is called
value_counts and it’s just as easy to use as sum, min or max. All you need to do it is add a period after the column
name and chain it on the tail end of your cell.

accident_list['latimes_make_and_model'].value_counts()

ROBINSON R44 38
BELL 206 30
AIRBUS 350 29
ROBINSON R22 20
BELL 407 13
HUGHES 369 13
MCDONNELL DOUGLAS 369 6

(continues on next page)

20 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.value_counts.html

First Python Notebook

(continued from previous page)

SCHWEIZER 269 5
AIRBUS 135 4
SIKORSKY 76 2
AGUSTA 109 2
AIRBUS 130 1
Name: latimes_make_and_model, dtype: int64

Congratulations, you’ve made your first finding. With that little line of code, you’ve calculated an important fact:
During the period being studied, the Robinson R44 had more fatal accidents than any other helicopter.

3.5.2 Reset a DataFrame

You may notice that even though the result has two columns, pandas did not return a clean-looking table in the same way
as head did for our DataFrame. That’s because our column, a Series, acts a little bit different than the DataFrame created
by read_csv. In most instances, you can convert ugly Series into a pretty DataFrame by tacking on the reset_index
method on the end.

accident_list['latimes_make_and_model'].value_counts().reset_index()

index latimes_make_and_model
0 ROBINSON R44 38
1 BELL 206 30
2 AIRBUS 350 29
3 ROBINSON R22 20
4 BELL 407 13
5 HUGHES 369 13
6 MCDONNELL DOUGLAS 369 6
7 SCHWEIZER 269 5
8 AIRBUS 135 4
9 SIKORSKY 76 2
10 AGUSTA 109 2
11 AIRBUS 130 1

Why does a Series behave differently than a DataFrame? Why does reset_index have such a weird name?

Like so much in computer programming, the answer is simply, “because the people who created the library said so.”
It’s important to learn that all open-source programming tools are made by humans, and humans have their quirks.
Over time you’ll see pandas has more than a few.

As a beginner, you should just accept the oddities and keep moving. As you get more advanced, if there’s something
about the system you think could be improved you should consider contributing to the Python code that operates the
library.

Before we move on to the next chapter, here’s a challenge. See if you can answer a few more questions a journalist
might ask about our dataset. All four of the questions below can be answered using only tricks we’ve covered thus far.
See if you can do it.

1. What was the total number of fatalities?

2. Which helicopter maker had the most accidents?

3. What was the total number of helicopter accidents by year?

4. Which state had the most helicopter accidents?

Once you’ve written code answered those, you’re ready to move on to the next chapter.

3.5. Columns 21

https://pandas.pydata.org/pandas-docs/stable/development/contributing.html

First Python Notebook

3.6 Filter

The most common way to filter a DataFrame is to pass an expression as an “index” that can be used to decide which
records should be kept and which discarded. You write the expression by combining a column on your DataFrame with
an “operator” like == or > or < and a value to compare against each row.

Note: If you are familiar with writing SQL to manipulate databases, pandas’ filtering system is somewhat similar to
a WHERE query. The official pandas documentation offers direct translations between the two.

Let’s try filtering against the state field. Save a postal code into a variable. This will allow us to reuse it later.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")

my_state = "IA"

In the next cell we will ask pandas to narrow down our list of accidents to just those in the state we’re interested in. We
will create a filter expression and place it between two flat brackets following the DataFrame we wish to filter.

accident_list[accident_list['state'] == my_state]

event_id ntsb_make ntsb_model ntsb_number year \
12 20060705X00868 BELL 206B CHI06FA173 2006
118 20130102X35708 BELL HELICOPTER 407 CEN13FA122 2013
140 20140908X10448 ROBINSON HELICOPTER COMPANY R44 II CEN14LA487 2014

date city state country total_fatalities \
12 06/30/06 00:00:00 WALFORD IA USA 1
118 01/02/13 00:00:00 CLEAR LAKE IA USA 3
140 09/06/14 00:00:00 MACEDONIA IA USA 1

latimes_make latimes_model latimes_make_and_model
12 BELL 206 BELL 206
118 BELL 407 BELL 407
140 ROBINSON R44 ROBINSON R44

Now we should save the results of that filter into a new variable separate from the full list we imported from the CSV
file. Since it includes only the sites for the state we want, let’s call it my_accidents.

my_accidents = accident_list[accident_list['state'] == my_state]

To check our work and find out how many records are left after the filter, let’s run the DataFrame inspection commands
we learned earlier.

First head.

my_accidents.head()

event_id ntsb_make ntsb_model ntsb_number year \
12 20060705X00868 BELL 206B CHI06FA173 2006
118 20130102X35708 BELL HELICOPTER 407 CEN13FA122 2013

(continues on next page)

22 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/SQL
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#where

First Python Notebook

(continued from previous page)

140 20140908X10448 ROBINSON HELICOPTER COMPANY R44 II CEN14LA487 2014

date city state country total_fatalities \
12 06/30/06 00:00:00 WALFORD IA USA 1
118 01/02/13 00:00:00 CLEAR LAKE IA USA 3
140 09/06/14 00:00:00 MACEDONIA IA USA 1

latimes_make latimes_model latimes_make_and_model
12 BELL 206 BELL 206
118 BELL 407 BELL 407
140 ROBINSON R44 ROBINSON R44

Then info.

my_accidents.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 12 to 140
Data columns (total 13 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 event_id 3 non-null object
1 ntsb_make 3 non-null object
2 ntsb_model 3 non-null object
3 ntsb_number 3 non-null object
4 year 3 non-null int64
5 date 3 non-null object
6 city 3 non-null object
7 state 3 non-null object
8 country 3 non-null object
9 total_fatalities 3 non-null int64
10 latimes_make 3 non-null object
11 latimes_model 3 non-null object
12 latimes_make_and_model 3 non-null object
dtypes: int64(2), object(11)
memory usage: 336.0+ bytes

Now pick another state and try running the code again. See if you can write filters that will answer the following
questions:

1. Which state recorded more accidents, Iowa or Missouri?

2. How many accidents recorded more than one fatality?

3. How many accidents happened in California in 2015?

4. What percentage of the total fatalities occured in California?

3.6. Filter 23

First Python Notebook

3.7 Group

The groupby method allows you to group a DataFrame by a column and then calculate a sum, or any other statistic,
for each unique value. This functions much like the “pivot table” feature found in most spreadsheets.

Let’s use it to total up the accidents by make and model. You start by passing the field you want to group on to the
function.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")

accident_list.groupby("latimes_make_and_model")

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7efe8feae190>

A nice start but you’ll notice you don’t get much back. The data’s been grouped, but we haven’t chosen what to do with
it yet. If we wanted the total by model, we would use the size method.

accident_list.groupby("latimes_make_and_model").size()

latimes_make_and_model
AGUSTA 109 2
AIRBUS 130 1
AIRBUS 135 4
AIRBUS 350 29
BELL 206 30
BELL 407 13
HUGHES 369 13
MCDONNELL DOUGLAS 369 6
ROBINSON R22 20
ROBINSON R44 38
SCHWEIZER 269 5
SIKORSKY 76 2
dtype: int64

The result is much like value_counts, but we’re allowed run to all kinds of statistical operations on the group, like
sum, mean and std. For instance, we could sum the total number of fatalities for each maker by stringing that field on
the end followed by the statistical method.

accident_list.groupby("latimes_make_and_model")['total_fatalities'].sum()

latimes_make_and_model
AGUSTA 109 5
AIRBUS 130 1
AIRBUS 135 11
AIRBUS 350 81
BELL 206 61
BELL 407 35
HUGHES 369 19
MCDONNELL DOUGLAS 369 7
ROBINSON R22 27

(continues on next page)

24 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://en.wikipedia.org/wiki/Pivot_table

First Python Notebook

(continued from previous page)

ROBINSON R44 71
SCHWEIZER 269 7
SIKORSKY 76 11
Name: total_fatalities, dtype: int64

Again our data has come back as an ugly Series. To reformat it as a pretty DataFrame use the reset_index method
again.

accident_list.groupby("latimes_make_and_model").size().reset_index()

latimes_make_and_model 0
0 AGUSTA 109 2
1 AIRBUS 130 1
2 AIRBUS 135 4
3 AIRBUS 350 29
4 BELL 206 30
5 BELL 407 13
6 HUGHES 369 13
7 MCDONNELL DOUGLAS 369 6
8 ROBINSON R22 20
9 ROBINSON R44 38
10 SCHWEIZER 269 5
11 SIKORSKY 76 2

You can clean up the 0 column name assigned by pandas with the rename method.

accident_list.groupby("latimes_make_and_model").size().rename("accidents").reset_index()

latimes_make_and_model accidents
0 AGUSTA 109 2
1 AIRBUS 130 1
2 AIRBUS 135 4
3 AIRBUS 350 29
4 BELL 206 30
5 BELL 407 13
6 HUGHES 369 13
7 MCDONNELL DOUGLAS 369 6
8 ROBINSON R22 20
9 ROBINSON R44 38
10 SCHWEIZER 269 5
11 SIKORSKY 76 2

Now save that as a variable.

accident_counts = accident_list.groupby("latimes_make_and_model").size().rename(
→˓"accidents").reset_index()

The result is a DataFrame with the accident totals we’ll want to merge with the FAA survey data to calculate rates.

Note: You may notice that we’ve configured rename differently than other methods so far. These are what Python
calls keyword arguments. They are inputs that are passed to a function or method by explicitly specifying the name of
the argument, followed by an equal sign and the value being passed. Here we used columns and inplace.

3.7. Group 25

First Python Notebook

Keyword arguments are different from positional arguments, which are passed to a function in the order that they are
defined. Keyword arguments can be useful because they make it clear which argument is being passed and also they
can be passed in any order, as long as the name of the argument is specified.

Also, keyword arguments are often used to specify default values for a function’s parameters, this way if an argument is
not passed, the default value will be used. For this reason, they are often used in pandas to override the default behavior
and provide customizations beyond the out-of-the-box behavior of a method. Visiting the pandas documentation for
any method, here’s the page for rename, will reveal what options are available.

To see the result, inspect the DataFrame with head.

accident_counts.head()

latimes_make_and_model accidents
0 AGUSTA 109 2
1 AIRBUS 130 1
2 AIRBUS 135 4
3 AIRBUS 350 29
4 BELL 206 30

Now we‘ve got a ranking we can work with.

3.8 Merge

Next we’ll cover how to merge two DataFrames together into a combined table. Before we can do that, we need to
read in a second file. We’ll pull faa-survey.csv, which contains annual estimates of how many hours each type of
helicopter was in the air. If we merge it with our accident totals, we will be able to calculate an accident rate.

We can read it in the same way as the NTSB accident list, with read_csv.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().
→˓rename(columns={0: "accidents"})

survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/
→˓main/docs/src/_static/faa-survey.csv")

Before you do anything, take a peek at it with with the head.

survey.head()

latimes_make_and_model total_hours
0 AGUSTA 109 362172
1 AIRBUS 130 1053786
2 AIRBUS 135 884596
3 AIRBUS 350 3883490
4 BELL 206 5501308

When joining two tables together, the first step is to look carefully at the columns in each table to find a common column
that can be joined. We can do that with the info command we learned earlier.

26 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html

First Python Notebook

accident_counts.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 latimes_make_and_model 12 non-null object
1 accidents 12 non-null int64
dtypes: int64(1), object(1)
memory usage: 320.0+ bytes

survey.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 latimes_make_and_model 12 non-null object
1 total_hours 12 non-null int64
dtypes: int64(1), object(1)
memory usage: 320.0+ bytes

You can see that each table contains the latimes_make_and_model column. We can therefore join the two files using
that column with the pandas merge method.

Note: If you are familar with traditional databases, you may recognize that the merge method in pandas is similar to
SQL’s JOIN statement. If you dig into merge’s documentation you will see it has many of the same options.

Merging two DataFrames is as simple as passing both to pandas built-in merge method and specifying which field
we’d like to use to connect them together. We will save the result into another new variable, which I’m going to call
merged_list.

merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")

That new DataFrame can be inspected like any other.

merged_list.head()

latimes_make_and_model accidents total_hours
0 AGUSTA 109 2 362172
1 AIRBUS 130 1 1053786
2 AIRBUS 135 4 884596
3 AIRBUS 350 29 3883490
4 BELL 206 30 5501308

By looking at the columns you can check how many rows survived the merge, a precaution you should take every time
you join two tables.

merged_list.info()

3.8. Merge 27

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html
https://en.wikipedia.org/wiki/Join_(SQL)
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html

First Python Notebook

<class 'pandas.core.frame.DataFrame'>
Int64Index: 12 entries, 0 to 11
Data columns (total 3 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 latimes_make_and_model 12 non-null object
1 accidents 12 non-null int64
2 total_hours 12 non-null int64
dtypes: int64(2), object(1)
memory usage: 384.0+ bytes

You can also verify that the DataFrame has the same number of records as there are values in accident_totals
column. That’s good; If there are no null values, that means that every record in each DataFrame found a match in the
other.

3.9 Compute

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().
→˓rename(columns={0: "accidents"})
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/
→˓main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")

To calculate an accident rate, we’ll need to create a new column based on the data in other columns, a process sometimes
known as “computing.”

In many cases, it’s no more complicated than combining two series using a mathematical operator. That’s true in this
case, where our goal is to divide the total number of accidents in each row into the total hours. That can accomplished
with the following:

merged_list['accidents'] / merged_list['total_hours']

0 5.522238e-06
1 9.489593e-07
2 4.521838e-06
3 7.467510e-06
4 5.453249e-06
5 6.150096e-06
6 1.081812e-05
7 1.089544e-05
8 6.732180e-06
9 1.610354e-05
10 4.388560e-06
11 2.184563e-06
dtype: float64

The resulting series can be added to your dataframe by assigning it to a new column. You name your column by
providing it as a quoted string inside of flat brackets. Let’s call this column something brief and clear like per_hour.

28 Chapter 3. Table of contents

First Python Notebook

merged_list['per_hour'] = merged_list['accidents'] / merged_list['total_hours']

Which, like everything else, you can inspect with the head command.

merged_list.head()

latimes_make_and_model accidents total_hours per_hour
0 AGUSTA 109 2 362172 5.522238e-06
1 AIRBUS 130 1 1053786 9.489593e-07
2 AIRBUS 135 4 884596 4.521838e-06
3 AIRBUS 350 29 3883490 7.467510e-06
4 BELL 206 30 5501308 5.453249e-06

You can see that the result is in scientific notation. As is common when calculating per capita statistics, you can multiple
all results by a common number to make the numbers more legible. That’s as easy as tacking on the multiplication at
the end of a computation. Here we’ll use 100,000.

merged_list['per_100k_hours'] = merged_list['per_hour'] * 100_000

3.10 Sort

Another simple but common technique for analyzing data is sorting. This can be useful for ranking the DataFrame to
show the first and last members of the table according to a particular column.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().
→˓rename(columns={0: "accidents"})
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/
→˓main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")
merged_list['per_hour'] = merged_list.accidents / merged_list.total_hours
merged_list['per_100k_hours'] = (merged_list.accidents / merged_list.total_hours) * 100_
→˓000

The sort_values method is how pandas does it. It expects that you provide it with the name of the column to sort by
in quotes. Try sorting by our computed field.

merged_list.sort_values("per_100k_hours")

latimes_make_and_model accidents total_hours per_hour \
1 AIRBUS 130 1 1053786 9.489593e-07
11 SIKORSKY 76 2 915515 2.184563e-06
10 SCHWEIZER 269 5 1139326 4.388560e-06
2 AIRBUS 135 4 884596 4.521838e-06
4 BELL 206 30 5501308 5.453249e-06
0 AGUSTA 109 2 362172 5.522238e-06
5 BELL 407 13 2113788 6.150096e-06
8 ROBINSON R22 20 2970806 6.732180e-06
3 AIRBUS 350 29 3883490 7.467510e-06

(continues on next page)

3.10. Sort 29

https://en.wikipedia.org/wiki/Scientific_notation
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html

First Python Notebook

(continued from previous page)

6 HUGHES 369 13 1201688 1.081812e-05
7 MCDONNELL DOUGLAS 369 6 550689 1.089544e-05
9 ROBINSON R44 38 2359729 1.610354e-05

per_100k_hours
1 0.094896
11 0.218456
10 0.438856
2 0.452184
4 0.545325
0 0.552224
5 0.615010
8 0.673218
3 0.746751
6 1.081812
7 1.089544
9 1.610354

Note that returns the DataFrame resorted in ascending order from lowest to highest. That is pandas’ default way of
sorting. You reverse it to show the largest values first by passing in an optional keyword argument called ascending.
When it is set to False, the DataFrame is sorted in descending order.

merged_list.sort_values("per_100k_hours", ascending=False)

latimes_make_and_model accidents total_hours per_hour \
9 ROBINSON R44 38 2359729 1.610354e-05
7 MCDONNELL DOUGLAS 369 6 550689 1.089544e-05
6 HUGHES 369 13 1201688 1.081812e-05
3 AIRBUS 350 29 3883490 7.467510e-06
8 ROBINSON R22 20 2970806 6.732180e-06
5 BELL 407 13 2113788 6.150096e-06
0 AGUSTA 109 2 362172 5.522238e-06
4 BELL 206 30 5501308 5.453249e-06
2 AIRBUS 135 4 884596 4.521838e-06
10 SCHWEIZER 269 5 1139326 4.388560e-06
11 SIKORSKY 76 2 915515 2.184563e-06
1 AIRBUS 130 1 1053786 9.489593e-07

per_100k_hours
9 1.610354
7 1.089544
6 1.081812
3 0.746751
8 0.673218
5 0.615010
0 0.552224
4 0.545325
2 0.452184
10 0.438856
11 0.218456
1 0.094896

Congratulations. With that, you’ve recreated the heart of the analysis published in the Los Angeles Times and covered

30 Chapter 3. Table of contents

First Python Notebook

most of the basic skills necessary to access and analyze data with pandas. In our next chapter, we will show how you
can chart the data with Altair.

3.11 Charts

Python has a number of charting tools that can work hand-in-hand with pandas. While Altair is a relative newbie
compared to veterans like matplotlib, it’s got great documentation and is easy to configure. Let’s take it for a spin.

3.11.1 Make a basic bar chart

Head back to the import cell at the top of your notebook and add Altair. In the tradition of pandas, we’ll import it with
the alias alt to reduce how much we need to type later on.

import warnings
warnings.simplefilter('ignore')
import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby(["latimes_make", "latimes_make_and_model"]).
→˓size().rename("accidents").reset_index()
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/
→˓main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")
merged_list['per_hour'] = merged_list.accidents / merged_list.total_hours
merged_list['per_100k_hours'] = (merged_list.accidents / merged_list.total_hours) * 100_
→˓000

import altair as alt

Once that’s run, we can pick up where we last left off at the bottom of the notebook. Let’s try to plot our accident rate
ranking as a bar chart.

With Altair imported, we can now feed it our DataFrame to start charting. Let’s take a look at the basic building block
of an Altair chart: the Chart object. We’ll tell it that we want to create a chart from merged_list by passing the
dataframe in, like so:

alt.Chart(merged_list)

SchemaValidationError Traceback (most recent call last)
~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/
→˓site-packages/altair/vegalite/v5/api.py in to_dict(self, *args, **kwargs)

2518 copy.data = core.InlineData(values=[{}])
2519 return super(Chart, copy).to_dict(*args, **kwargs)

-> 2520 return super().to_dict(*args, **kwargs)
2521
2522 def add_params(self, *params) -> Self:

~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/
→˓site-packages/altair/vegalite/v5/api.py in to_dict(self, *args, **kwargs)

848 # but due to how Altair is set up this should hold.
(continues on next page)

3.11. Charts 31

https://altair-viz.github.io/
https://matplotlib.org/

First Python Notebook

(continued from previous page)

849 # Too complex to type hint right now
--> 850 dct = super(TopLevelMixin, copy).to_dict(*args, **kwargs) # type:␣
→˓ignore[misc]

851
852 # TODO: following entries are added after validation. Should they be␣

→˓validated?

~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/
→˓site-packages/altair/utils/schemapi.py in to_dict(self, validate, ignore, context)

812 # show the less helpful ValidationError instead of
813 # the more user friendly SchemaValidationError

--> 814 raise SchemaValidationError(self, err) from None
815 return result
816

SchemaValidationError: '{'data': {'name': 'data-45403fa9afde868a6cd19a10672afb20'}}' is␣
→˓an invalid value.

'mark' is a required property

alt.Chart(...)

OK! We got an error, but don’t panic. The error says that Altair needs a “mark” — that is to say, it needs to know not
only what data we want to visualize, but also how to represent that data visually. There are lots of different marks that
Altair can use (You can check them all out here). But let’s try out the most versatile mark in our visualization toolbox:
the bar.

alt.Chart(merged_list).mark_bar()

alt.Chart(...)

That’s an improvement, but we’ve got a new error: Altair doesn’t know what columns of our dataframe to look at! At
a minimum, we also need to define the column to use for the x- and y-axes. We can do that by chaining in the encode
method.

alt.Chart(merged_list).mark_bar().encode(
x="latimes_make_and_model",
y="per_100k_hours"

)

alt.Chart(...)

That’s more like it!

Here’s an idea — maybe we want to do horizontal, not vertical bars. How would you rewrite this chart code to reverse
those bars?

alt.Chart(merged_list).mark_bar().encode(
x="per_100k_hours",
y="latimes_make_and_model"

)

32 Chapter 3. Table of contents

https://altair-viz.github.io/user_guide/marks.html

First Python Notebook

alt.Chart(...)

This chart is an okay start, but it’s sorted alphabetically by y-axis value, which is pretty sloppy and hard to visually
parse. Let’s fix that.

We want to sort the y-axis values by their corresponding x values. We’ve been using the shorthand syntax to pass in our
axis columns so far, but to add more customization to our chart we’ll have to switch to the longform way of defining
the y axis.

To do that, we’ll use a syntax like this: alt.Y(column_name, arg="value"). Instead of passing a string to y, this
lets us pass in a string and then any number of named arguments. There are lots more arguments that you might want
to pass in, like ones that will sum or average your data on the fly, or limit the range you want your axis to display. In
this case, we’ll try out the sort option.

alt.Chart(merged_list).mark_bar().encode(
x="per_100k_hours",
y=alt.Y("latimes_make_and_model", sort="-x")

)

alt.Chart(...)

And we can’t have a chart without context. Let’s throw in a title for good measure.

alt.Chart(merged_list).mark_bar().encode(
x="per_100k_hours",
y=alt.Y("latimes_make_and_model", sort="-x")

).properties(
title="Helicopter accident rates"

)

alt.Chart(...)

Yay, we made a chart!

3.11.2 Other marks

What if we wanted to switch it up and show this data in a slightly different form? For example, in the Los Angeles
Times story, the fatal accident rate is shown as a scaled circle.

We can try that out with just a few small tweaks, using Altair’s mark_circle option. We’ll keep the y encoding, since
we still want to split out our chart by make and model. Instead of an x encoding, though, we’ll pass in a size encoding,
which will pin the radius of each circle to that rate calculation. And hey, while we’re at it, let’s throw in an interactive
tooltip.

alt.Chart(merged_list).mark_circle().encode(
size="per_100k_hours",
y="latimes_make_and_model",
tooltip="per_100k_hours"

)

alt.Chart(...)

A nice little change from all the bar charts! But once again, this is by default sorted alphabetically by name. Instead,
it would be really nice to sort this by rate, as we did with the bar chart. How would we go about that?

3.11. Charts 33

https://www.latimes.com/projects/la-me-robinson-helicopters/
https://www.latimes.com/projects/la-me-robinson-helicopters/

First Python Notebook

alt.Chart(merged_list).mark_circle().encode(
size="per_100k_hours",
y=alt.Y("latimes_make_and_model", sort='-size'),
tooltip="per_100k_hours"

)

alt.Chart(...)

3.11.3 Add a color

What important facet of the data is this chart not showing? There are two Robinson models in the ranking. It might be
nice to emphasize them.

We have that latimes_make column in our original dataframe, but it got lost when we created our ranking because
we didn’t include it in our groupby command. We can fix that by scrolling back up our notebook and adding it to the
command. You will need to replace what’s there with a list containing both columns we want to keep.

accident_counts = accident_list.groupby(["latimes_make", "latimes_make_and_model"]).
→˓size().rename("accidents").reset_index()

Rerun all of the cells below to update everything you’re working with. Now if you inspect the ranking you should see
the latimes_make column included.

merged_list.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 12 entries, 0 to 11
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 latimes_make 12 non-null object
1 latimes_make_and_model 12 non-null object
2 accidents 12 non-null int64
3 total_hours 12 non-null int64
4 per_hour 12 non-null float64
5 per_100k_hours 12 non-null float64
dtypes: float64(2), int64(2), object(2)
memory usage: 672.0+ bytes

Let’s put that to use with an Altair option that we haven’t used yet: color.

alt.Chart(merged_list).mark_bar().encode(
x="per_100k_hours",
y=alt.Y("latimes_make_and_model",sort="-x"),
color="latimes_make"

).properties(
title="Helicopter accident rates"

)

alt.Chart(...)

Hey now! That wasn’t too hard, was it? But now there’s too many colors. We would be better off if we emphasized the
Robinson bars, but left the rest of the makers the default color.

34 Chapter 3. Table of contents

First Python Notebook

We can accomplish that by taking advantage of alt.condition, Altair’s method for adding logic to the configuration
of the chart. In this case, we want to set the chart one color if Robinson is the maker, and another if it isn’t. Here’s how
to do that:

alt.Chart(merged_list).mark_bar().encode(
x="per_100k_hours",
y=alt.Y("latimes_make_and_model",sort="-x"),
color=alt.condition(

alt.datum.latimes_make == "ROBINSON",
alt.value("orange"),
alt.value("steelblue")

)
).properties(

title="Helicopter accident rates"
)

alt.Chart(...)

3.11.4 datetime data

One thing you’ll almost certainly find yourself grappling with time and time again is date (and time) fields, so let’s talk
about how to handle them.

Let’s see if we can do that with our original DataFrame, the accident_list that contains one record for every heli-
copter accident. We can remind ourselves what it contains with the info command.

accident_list.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163 entries, 0 to 162
Data columns (total 13 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 event_id 163 non-null object
1 ntsb_make 163 non-null object
2 ntsb_model 163 non-null object
3 ntsb_number 163 non-null object
4 year 163 non-null int64
5 date 163 non-null object
6 city 163 non-null object
7 state 162 non-null object
8 country 163 non-null object
9 total_fatalities 163 non-null int64
10 latimes_make 163 non-null object
11 latimes_model 163 non-null object
12 latimes_make_and_model 163 non-null object
dtypes: int64(2), object(11)
memory usage: 16.7+ KB

When you import a CSV file with read_csv it will take a guess at column types — for example, integer, float,
boolean, datetime or string — but it will default to a generic object type, which will generally behave like a
string, or text, field. You can see the data types that pandas assigned to our accident list on the right hand side of the
info table.

3.11. Charts 35

First Python Notebook

Take a look above and you’ll see that pandas is treating our date column as an object. That means we can’t chart it
using Python’s system for working with dates.

But we can fix that. The to_datetime method included with pandas can handle the conversion. Here’s how to
reassign the date column after making the change.

accident_list['date'] = pd.to_datetime(accident_list['date'])

This redefines each object in that column as a date. If your dates are in an unusual or ambiguous format, you may have
to pass in a specific formatter, but in this case pandas should be able to guess correctly.

Run info again and you’ll notice a change. The data type for date has changed.

accident_list.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163 entries, 0 to 162
Data columns (total 13 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 event_id 163 non-null object
1 ntsb_make 163 non-null object
2 ntsb_model 163 non-null object
3 ntsb_number 163 non-null object
4 year 163 non-null int64
5 date 163 non-null datetime64[ns]
6 city 163 non-null object
7 state 162 non-null object
8 country 163 non-null object
9 total_fatalities 163 non-null int64
10 latimes_make 163 non-null object
11 latimes_model 163 non-null object
12 latimes_make_and_model 163 non-null object
dtypes: datetime64[ns](1), int64(2), object(10)
memory usage: 16.7+ KB

Now that we’ve got that out of the way, let’s see if we can chart with it. Let’s see if we can count the total fatalities over
time.

alt.Chart(accident_list).mark_bar().encode(
x="date",
y="total_fatalities"

)

alt.Chart(...)

This is great on the x axis, but it’s not quite accurate on the y. To make sure this chart is accurate, we’ll need to aggregate
the y axis in some way.

36 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html

First Python Notebook

3.11.5 Aggregate with Altair

We could back out and create a new dataset grouped by date, but Altair actually lets us do some of that grouping on
the fly. We want to add everything that happens on the same date, so we’ll pop in a sum function on our y column.

alt.Chart(accident_list).mark_bar().encode(
x="date",
y="sum(total_fatalities)"

)

alt.Chart(...)

This is getting there. But sometimes plotting on a day-by-day basis isn’t all that useful — especially over a long period
of time, like we have here.

Again, we could back out and create a new dataframe grouping by month, but we don’t have to — in addition to standard
operations (sum, mean, median, etc.), Altair gives us some handy datetime aggregation options. You can find a list of
options in the library documentation.

alt.Chart(accident_list).mark_bar().encode(
x="yearmonth(date)",
y="sum(total_fatalities)",

)

alt.Chart(...)

This is great for showing the pattern of fatalities over time, but it doesn’t give us additional information that might be
useful. For example, we almost certainly want to investigate the trend for each manufacturer.

We could do that by adding a color encoding, like we did on the last chart. In this case, though, stacking those bars
makes it a little hard to focus on amounts individually. What can do instead is to facet, which will create separate charts,
one for each helicopter maker.

alt.Chart(accident_list).mark_bar().encode(
x="yearmonth(date)",
y="sum(total_fatalities)",
facet="latimes_make"

)

alt.Chart(...)

3.11.6 Polishing your chart

These charts give us plenty of areas where we might want to dig in and ask more questions, but none are polished
enough to pop into a news story quite yet. But there are lots of additional labeling, formatting and design options that
you can dig into in the Altair docs — you can even create Altair themes to specify default color schemes and fonts.

But you may not want to do all that tweaking in Altair, especially if you’re just working on a one-off graphic. If you
wanted to hand this chart off to a graphics department, all you’d have to do is head to the top right corner of your chart.

See those three dots? Click on that, and you’ll see lots of options. Downloading the file as an SVG will let anyone with
graphics software like Adobe Illustrator take this file and tweak the design.

To get the raw data out, you’ll need to learn one last pandas trick. It’s covered in our final chapter.

3.11. Charts 37

https://altair-viz.github.io/user_guide/transform/timeunit.html
https://altair-viz.github.io/index.html

First Python Notebook

3.12 Export

Saving the dataframes you’ve created to your computer requires one final pandas method. It’s to_csv, an exporting
companion to read_csv. Append it to any dataframe and provide a filepath. That’s all it takes.

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-
→˓notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby(["latimes_make", "latimes_make_and_model"]).
→˓size().reset_index().rename(columns={0: "accidents"})
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/
→˓main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")
merged_list['per_hour'] = merged_list.accidents / merged_list.total_hours
merged_list['per_100k_hours'] = (merged_list.accidents / merged_list.total_hours) * 100_
→˓000

merged_list.to_csv("accident-rate-ranking.csv")

The file it creates can be imported into other programs for reuse, including the data visualization tools many newsrooms
rely on to publish graphics. For instance, the file we’ve exported above could be used to quickly draft a chart with
Datawrapper, like this one:

Note: Interested in learning more about how to publish data online? Check out “First Visual Story,” a tutorial that will
show you how journalists at America’s top news organizations escape rigid content-management systems to publish
custom interactive graphics on deadline.

The to_csv() method accepts several additional optional arguments. The most important one is the filename input,
which is used to specify the path and name of the file that will be created. The index=False keyword argument tells
pandas to exclude the index column of the DataFrame. You can also specify the separator by passing the sep parameter.

merged_list.to_csv("accident-rate-ranking.csv", index=False, sep=";")

This will create a CSV file without the index with semicolons as the separator between values.

And with that, you’ve completed “First Python Notebook.” If you have any questions or critiques, you can get involved
on our GitHub repository, where all of the code that powers this site is available as open source.

3.13 Advanced installation

While there are numerous ways to install and configure Jupyter notebooks, advanced users like to take advantage of
Python’s power tools to have more control over when and where code is installed on their system.

This guide will demonstrate how to install everything you computer needs to play like the pros.

Sections

• A command-line interface

• Python 3.6 or higher

38 Chapter 3. Table of contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://datawrapper.de/
https://palewi.re/docs/first-visual-story/
https://github.com/palewire/first-python-notebook

First Python Notebook

• The pipenv environment manager

• Python packages

• Your first notebook

3.13.1 A command-line interface

Whether you know about it or not, there should be a way to open a window and directly issue commands to your
operating system. Different operating systems give this tool slightly different names, but they all have some form of it.

On Windows this is called the “command prompt.” On MacOS it is called the “terminal.” Other people will call this
the “command line.”

On Windows, we recommend you install the Windows Subsystem for Linux and select the Ubuntu distribution from the
Windows Store. This will give you access to a generic open-source terminal without all the complications and quirks
introduced by Windows. On MacOS, the standard terminal app will work fine.

3.13.2 Python 3.6 or higher

Python is a free and open-source computer programming language. It’s one of the most popular in the world and praised
by its supporters as clear and easy to read.

That makes it ideal for beginners and is partly why it’s been adopted by professionals in many fields, ranging from
engineering and web development to journalism and music.

You can check if Python is already installed on your computer by visiting your command line and entering the following:

python --version

You should see something like this after you hit enter:

Python 3.6.10

If not, you’ll need to install Python on your system.

If you see a number starting with 2, like say . . .

Python 2.7.12

. . . then you have an outdated version of Python and will need to upgrade to a version starting with a three. You can
probably complete the class without doing so, but the maintainers of Python are gradually phasing out version two and
officially recommend you upgrade.

Instructions for both new installations and upgrades can be found here.

3.13. Advanced installation 39

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.python.org/
https://docs.python-guide.org/starting/installation/

First Python Notebook

3.13.3 The pipenv environment manager

Our notebook depends on a set of Python tools that we’ll need to install before we can run the code. They are the
JupyterLab computational notebook, the requests library for downloading webpages and BeautifulSoup, a handy utility
for parsing data out of HTML.

By default, Python’s third-party packages are all installed in a shared “global” folder somewhere in the depths of your
computer. By default, every Python project on your computer draws from this same set of installed programs.

This approach is fine for your first experiments with Python, but it quickly falls apart when you start to get serious about
coding.

For instance, say you develop a web application today with Flask version 1.1. What if, a year from now, you want to
start a new project and use a newer version of Flask? Your old app is still live and requires occasional patches, but you
don’t have time to re-write all of your old to make it compatible with the latest version of Flask.

Open-source projects are changing every day and such conflicts are common, especially when you factor in the sub-
dependencies of your project’s direct dependencies, as well as the sub-dependencies of those sub-dependencies.

Programmers solve this problem by creating a virtual environment for each project that isolates them into discrete,
independent containers that do not rely on code in the global environment.

Strictly speaking, working within a virtual environment is not required. At first, it might even feel like a hassle. But
in the long run, you will be glad you did it. And you don’t have to take my word for it, you can read discussions on
StackOverflow and Reddit.

Good thing pipenv can do this for us.

Pipenv and its prerequisites are installed via your computer’s command-line interface. You can verify it’s there by
typing the following into your terminal:

pipenv --version

If you have it installed, you should see the terminal respond with the version on your machine.

pipenv, version 2018.11.26

If you get an error, you will need to install it.

If you are on a Mac, Pipenv’s maintainers recommend installing via Homebrew:

brew install pipenv

If you are on Windows and using the Windows Subsystem for Linux, you can install Linuxbrew and use it to install
Pipenv.

If neither option makes sense for you, Pipenv’s docs recommend a user install via pip:

pip install --user pipenv

Whatever installation route you choose, you can confirm your success by testing for its version again:

pipenv --version

If you see that version number now, you know you’re okay.

40 Chapter 3. Table of contents

https://jupyter.org/
https://docs.python-requests.org/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://docs.python.org/3/tutorial/venv.html
https://conda.io/docs/index.html
https://www.reddit.com/r/Python/comments/2qq1d9/should_i_always_use_virtualenv/
https://pipenv.kennethreitz.org/en/latest/
https://pipenv.kennethreitz.org/en/latest/install/#homebrew-installation-of-pipenv
https://brew.sh/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.brew.sh/Homebrew-on-Linux
https://pipenv.kennethreitz.org/en/latest/install/#pragmatic-installation-of-pipenv
https://pip.pypa.io/en/stable/user_guide/#user-installs

First Python Notebook

Create a code directory

Now let’s create a common folder where all you of your projects will be stored starting with this one. This is also where
our virtualenv will be configured.

Depending on your operating system and personal preferences, open up a terminal program. It will start you off in your
computer’s home directory, just like your file explorer. Enter the ls command and press enter to see all of the folders
there now.

ls

Now let’s check where we are in our computer’s file system. For this we’ll use a command called pwd, which stands
for present working directory. The output is the full path of your location in the file system, something like /Users/
palewire/.

pwd

Use the mkdir command to create a new directory for your code. In the same style as the Desktop, Documents and
Downloads folders included by most operating system, we will name this folder Code.

mkdir Code

To verify that worked, you can open in your file explorer and navigate to your home folder. Now jump into the Code
directory, which is the same as double clicking on a folder to enter it in your filesystem navigator.

cd Code

Create a project directory

Now let’s make a folder for your work in this class.

mkdir first-python-notebook

Then, jump into project directory:

cd first-python-notebook

This is where you’ll store a local copy of all the code and files you create for this project.

It isn’t necessary to change directories one level at a time. You can also specify the full path of directory you want to
change into. For instance, from your home directory you could running the following to move directly into your project
directory.

cd Code/first-python-notebook

3.13. Advanced installation 41

https://en.wikipedia.org/wiki/Ls
https://en.wikipedia.org/wiki/Pwd
https://en.wikipedia.org/wiki/Mkdir

First Python Notebook

Install your first package

Now let’s install a simple Python package to see pipenv in action. We’ll choose yolk3k, a simple command-line tool
that can list all your installed python packages.

We can add it to our project’s private virtual environment by typing its name after Pipenv’s install command.

pipenv install yolk3k

When you invoke Pipenv’s install command, it checks for an existing virtual environment connected to your project’s
directory. Finding none, it creates one, then installs your packages into it.

As a result, two files are added to your project directory: Pipfile and Pipfile.lock. Open these files in a text editor
and you’ll see how they describe your project’s Python requirements.

In the Pipfile, you’ll see the name and exact version of any package we directed Pipenv to install. We didn’t specify
an exact version, so you’ll see:

[packages]
yolk3k = "*"

Pipfile.lock has a more complicated, nested structure that specifies the exact version of your project’s direct depen-
dencies along with all their sub-dependencies.

Now that yolk is installed, we can execute it inside our environment using the pipenv run command. Let’s use it to
see yolk3k’s method for listing all of our currently installed tools.

pipenv run yolk -l

You should see the computer spit out everything you have installed. You’ll notice that yolk3k is on the list.

3.13.4 Python packages

Next we will install the extra Python packages used during the tutorial.

We will return to pipenv and use it to install JupyterLab, the web-based interactive development environment for Jupyter
notebooks, code and data.

pipenv install jupyterlab

We’ll install pandas the same way:

pipenv install pandas

Install altair too.

pipenv install altair

Note: You can install more than one package at once. For instance, all three of the packages above could be added
like so:

pipenv install jupyterlab pandas altair

42 Chapter 3. Table of contents

https://pypi.org/project/yolk3k/

First Python Notebook

3.13.5 Your first notebook

Now we can use pipenv’s run command to start JupyterLab from your terminal.

pipenv run jupyter lab

That will open up a new tab in your default web browser that looks something like this:

Click the “Python 3” button in the middle panel and create a new Python 3 notebook. You should now be able to pick
up in chapter two and start work from there.

3.14 About this class

This course was first developed by Ben Welsh for an October 2016 “watchdog workshop” organized by Investigative
Reporters and Editors at San Diego State University’s school of journalism.

Since then it has grown into a six-hour, hands-on training that has been taught as a massive, open online course at the
University of Texas at Austin, become part of Stanford’s curriculum and been offered at an unbroken string of annual
conferences organized by the National Institute for Computer-Assisted Reporting. Several classes have been streamed
live, with more than one available as a recording.

The class has frequently been taught with and by others, including James Gordon, Andrea Suozzo, Cheryl Phillips, Iris
Lee, Gabrielle LaMarr LeMee, Melissa Lewis, Aaron Williams, Derek Willis, Joe Germuska, Kae Petrin, Eric Sagara,
Serdar Tumgoren, Simon Willison, David Eads and Amy Schmitz Weiss.

3.14. About this class 43

https://palewi.re/who-is-ben-welsh/
http://www.californiacivicdata.org/2016/10/08/first-python-notebook/
https://knightcenter.utexas.edu/blog/00-18396-sign-now-our-new-online-course-data-journalism-python-data-journalists-analyzing-money
https://knightcenter.utexas.edu/blog/00-18396-sign-now-our-new-online-course-data-journalism-python-data-journalists-analyzing-money
https://www.youtube.com/watch?v=x-y7tRpq7xM
https://www.youtube.com/watch?v=2RgPoy05AnA
https://journalism.missouri.edu/people/james-gordon/
https://andreasuozzo.com/
https://comm.stanford.edu/faculty-phillips/
https://www.latimes.com/people/iris-lee
https://www.latimes.com/people/iris-lee
https://linktr.ee/lamarrlemee
https://melissalewis.codes/
https://acwx.net/
http://thescoop.org/
https://about.me/joegermuska
https://www.chalkbeat.org/authors/kae-petrin
https://www.linkedin.com/in/esagara
https://twitter.com/zstumgoren
https://simonwillison.net/
http://www.recoveredfactory.net/
https://californiacivicdata.org/2017/07/12/first-python-notebook-at-sdsu/

	What you will learn
	Who can take it
	Table of contents
	JupyterLab
	Install JupyterLab Desktop
	Open a Python 3 notebook

	Notebooks
	Hashes make headings

	Pandas
	Import pandas
	Conduct a simple data analysis

	Data
	The read_csv method
	The head method
	The info method

	Columns
	Count a column’s values
	Reset a DataFrame

	Filter
	Group
	Merge
	Compute
	Sort
	Charts
	Make a basic bar chart
	Other marks
	Add a color
	datetime data
	Aggregate with Altair
	Polishing your chart

	Export
	Advanced installation
	A command-line interface
	Python 3.6 or higher
	The pipenv environment manager
	Create a code directory
	Create a project directory
	Install your first package

	Python packages
	Your first notebook

	About this class

