

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

First Python Notebook

A step-by-step guide to analyzing data with Python and the Jupyter notebook.

What you will learn

This textbook will teach you:

	Just enough of the Python [https://www.python.org/] computer-programming language to read, filter, join, group, aggregate and rank structured data with pandas [http://pandas.pydata.org/], a popular open-source tool for statistical analysis

	How to record, remix and republish your work using Project Jupyter [http://jupyter.org/], a browser-based interface for writing code that is emerging as the standard for generating reproducible research

	How to explore data using using Altair [https://altair-viz.github.io/], a Python package that offers a simple, structured grammar for generating charts.

Who can take it

This course is free. If you’ve tried Python once or twice, have good attitude and know how to take a few code crashes in stride, you are qualified.

Table of contents

Chapters

	1. JupyterLab

	2. Notebooks

	3. Pandas

	4. Data

	5. Columns

	6. Filter

	7. Group

	8. Merge

	9. Compute

	10. Sort

	11. Charts

	12. Export

Appendix

	13. Advanced installation

	14. About this class

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

1. JupyterLab

A Jupyter [http://jupyter.org/] notebook is a browser-based interface where you can write, run, remix and republish code.

It is free software you can install and run like any other open-source library. It is used by scientists [http://nbviewer.jupyter.org/github/robertodealmeida/notebooks/blob/master/earth_day_data_challenge/Analyzing%20whale%20tracks.ipynb], scholars [http://nbviewer.jupyter.org/github/nealcaren/workshop_2014/blob/master/notebooks/5_Times_API.ipynb], investors [https://github.com/rsvp/fecon235/blob/master/nb/fred-debt-pop.ipynb] and corporations to create and share their research.

It is also used by journalists to develop stories and show their work. Examples published by past teachers of this class include:

	“As Opioid Crisis Ramped Up, Pills Flowed Into Vermont by the Millions” [https://github.com/asuozzo/arcos-opioid-analysis-vt] by
Andrea Suozzo

	“A frenzy of well drilling is depleting aquifers in California farmland.” [https://github.com/datadesk/groundwater-analysis] by Gabrielle LaMarr LeMee

	“What it’s like to go to school when dozens have been killed nearby” [https://github.com/datadesk/highschool-homicide-analysis] by Iris Lee

	“City of Chicago Parking and Camera Ticket Data” [https://github.com/propublica/il-tickets-notebooks] by David Eads

You can find hundreds of other examples on GitHub [https://github.com/search?q=language%3A%22Jupyter+Notebook%22&type=Repositories&ref=advsearch&l=Jupyter+Notebook&l=&s=updated&o=desc], including work by Buzzfeed [https://github.com/BuzzFeedNews/2016-01-tennis-betting-analysis/blob/master/notebooks/tennis-analysis.ipynb], ProPublica [https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb], The Economist [https://github.com/theeconomist/big-mac-data/blob/master/Big%20Mac%20data%20generator.ipynb], POLITICO [https://github.com/The-Politico/politico-2018-district-similarity-maps/blob/master/demographic_similarity.ipynb], The Markup [https://github.com/the-markup/investigation-isp] and the Los Angeles Times [https://github.com/datadesk/notebooks].

There are numerous ways to install and configure Jupyter notebooks. Since this tutorial is designed for beginners, it will demonstrate how to use JupyterLab Desktop [https://github.com/jupyterlab/jupyterlab-desktop], a self-contained application that provides a ready-to-use Python environment with several popular libraries bundled in. It can be installed on any operating system with a simple point-and-click interface.

Note

Advanced users like to take advantage of Python’s power tools to have more control over when and where code is installed on their system. Readers interested in the techniques preferred by the pros should consult our appendix. It requires use of your computer’s command-line interface.

1.1. Install JupyterLab Desktop

The first step is to visit JupyterLab Desktop’s homepage on GitHub [https://github.com/jupyterlab/jupyterlab-desktop#download] in your web browser.

[image: jupterlab desktop homepage]

Scroll down to the documentation below the code until you reach the Download [https://github.com/jupyterlab/jupyterlab-desktop#download] section.

[image: jupyterlab desktop download]

Then pick the link appropriate for your operating system. The installation file is large so the download might take a while.

Find the file in your downloads directory and double click it to begin the installation process. Follow the instructions presented by the pop-up windows, sticking to the default options.

Warning

Your computer’s operating system might flag the JupyterLab Desktop installer as an unverified or insecure application. Don’t worry. The tool has been vetted by Project Jupyter’s core developers and it’s safe to use.

If your system is blocking you from installing the tool, you’ll likely need to work around its barriers. For instance, on MacOS, this might require visiting your system’s security settings [https://www.wikihow.com/Install-Software-from-Unsigned-Developers-on-a-Mac] to allow the installation.

1.2. Open a Python 3 notebook

Once the program is installed, you can accept the installation wizard’s offer to immediately open the program, or you can search for “Jupyter Lab” in your operating system’s application finder.

That will open up a new window that looks something like this:

[image: jupyterlab desktop]

Hit the “Python 3” button in the launcher panel on the right and you’re ready to move on to our next chapter.

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

2. Notebooks

You should see a new panel with an empty box at the top. That means you are all set up and ready to write Python. If you‘ve never done it before, you can remain calm. We can start out slow with some simple math.

Type the following into the box, then hit the play button in the toolbar above the notebook or hit SHIFT+ENTER on your keyboard. The number four should appear.

2+2

4

There. Not so bad, right? You have just written your first code. When you execute a cell, the text inside it will be processed and the output will be displayed below the cell. If the cell contains code, it will be run by the Jupyter notebook’s underlying programming language. In the jargon of Python, you have entered two integers [https://docs.python.org/3/library/functions.html#int] and combined them using the addition operator [https://docs.python.org/3/library/operator.html#mapping-operators-to-functions].

Now try writing in your own math problem in the next cell. Maybe 2+3 or 2+200. Whatever strikes your fancy. After you’ve typed it in, hit the play button or SHIFT+ENTER. This to-and-fro of writing Python code in a cell and then running it with the play button is the rhythm of working in a notebook.

If you get an error after you run a cell, look carefully at your code and see that it exactly matches what’s been written in the example. Here’s an example of a error that I’ve added intentionally:

2+2+

 File "/tmp/ipykernel_1293/4150814810.py", line 1
 2+2+
 ^
SyntaxError: invalid syntax

Don’t worry. Code crashes are a normal part of life for computer programmers. They’re usually caused by small typos that can be quickly corrected.

2+2+2

6

The best thing you can do is remain calm and carefully read the error message. It usually contains clues that can help you fix the problem.

Over time you will gradually stack cells to organize an analysis that runs down your notebook from the top. A simple example is storing your number in a variable in one cell:

number = 2

Then adding it to another value in the next cell:

number + 3

5

Run those two cells in succession and the notebook should output the number five.

Change the number value to 3 and run both cells again. Instead of 5, it should now output 6.

So, first this:

number = 3

Then this:

number + 3

6

Now try defining your own numeric variable and doing some math with it. You can name it whatever you want. Want to try some other math operations? The - sign does subtraction. Multipication is *. Division is /.

Sometimes it is helpful to describe what the code is doing in case you want to share it with a colleague or return to it after some time. You can add comments in the cell by putting a hash # in front of the text. So, for example, we could use a comment to add extra information about the number variable.

This is a random number
number = 3

To add a cell in a Jupyter notebook, you can use the “Insert” menu at the top of the page and select “Insert Cell Above” or “Insert Cell Below”. Alternatively, you can use the keyboard shortcut “a” to insert a cell above the current cell or “b” to insert a cell below the current cell. You can also use the “+” button in the toolbar above the notebook to insert a cell below the current cell.

To remove a cell, you can select the cell and press the “dd” key. Alternatively, you can use the “Edit” menu at the top of the page and select “Delete Cells” or you can use the “scissors” button in the toolbar above the notebook to delete the selected cell. Note that when you delete a cell, everything in that cell will be lost and it cannot be undone.

Note

Cells can contain variables, functions or imports. If you’ve never written code before and are unfamiliar with those terms, we recommend “An Informal Introduction to Python” [https://docs.python.org/3/tutorial/introduction.html] and subsequent sections of python.org’s official tutorial.

Everything we have done so far has been in code cells, the default cell type. We can also make text cells, which are useful for giving our notebooks some structure and organization. You can do this by manipulating the pulldown menu in the toolbar directly above the notebook. By default the input is set to “Code.” Click the dropdown arrow and change it to “Markdown,” [https://en.wikipedia.org/wiki/Markdown] a markup language for formatting text similar to HTML.

These cells allow you to create headers, write descriptions, add links and more to add context to your code. “The Ultimate Markdown Guide” [https://medium.com/analytics-vidhya/the-ultimate-markdown-guide-for-jupyter-notebook-d5e5abf728fd] is a reference on all of the styling that you can draw from. For now, let’s try adding a heading and a bulleted list.

Hashes make headings
- Dashes make
- Bulleted lists

2.1. Hashes make headings

	Dashes make

	Bulleted lists

Once you’ve got the hang of making the notebook run, you’re ready to introduce pandas, the powerful Python analysis library that can do a whole lot more than add a few numbers together.

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

3. Pandas

Python is filled with functions to do pretty much anything you’d ever want to do with a programming language: navigate the web [http://docs.python-requests.org/], parse data [https://docs.python.org/2/library/csv.html], interact with a database [http://www.sqlalchemy.org/], run fancy statistics [https://www.scipy.org/], build a pretty website [https://www.djangoproject.com/] and so [https://www.crummy.com/software/BeautifulSoup/] much [http://www.nltk.org/] more [https://pillow.readthedocs.io/en/stable/].

Creative people have put these tools to work to get a wide range of things done [https://www.python.org/about/success/] in the academy, the laboratory and even in outer space. Some are included in a toolbox that comes with the language, known as the standard library. Others have been built by members of Python’s developer community and need to be downloaded and installed from the web.

[image: pandas on PyPI]

One third-party tool that’s important for this class is called pandas [http://pandas.pydata.org/]. It was invented for use at a financial investment firm [https://www.aqr.com/] and has become the leading open-source library for accessing and analyzing data in many different fields.

3.1. Import pandas

Create a new cell at the top of your notebook where we will import pandas for our use. Type in the following and hit the play button.

import pandas

If nothing happens, that’s good. It means you have pandas installed and ready as to use.

Note

Since pandas is created by a third party independent from the core Python developers, it wouldn’t be installed by default if you followed our our advanced installation instructions.

It’s available to you because the JupyterLab Desktop developers have pre-selected a curated list of common utilities to include with the package, another reason to love their easy installer.

Return to the cell with the import and rewrite it like this.

import pandas as pd

This will import the pandas library at the shorter variable name of pd. This is standard practice in the pandas community. You will frequently see examples of pandas code online using pd as shorthand. It’s not required, but it’s good to get in the habit so that your code is more likely to be quickly understood by other computer programmers.

Note

In Python, a variable is a way to store a value in memory for later use. A variable is a named location in the computer’s memory where a value can be stored and retrieved. Variables are used to store data values, such as numbers, strings, lists, or objects, and they can be used throughout the program to refer to the stored value.

To create your own variable in Python, you use the assignment operator (=) to assign a value to a variable. The variable name is on the left side of the assignment operator and the value is on the right side.

3.2. Conduct a simple data analysis

Those two little letters contain dozens of data analysis tools that we’ll use in future lessons. They can read in millions of records, compute advanced statistics, filter, sort, rank and do just about anything else you’d want to do with data.

We’ll get to all of that soon enough, but let’s start out with something simple.

Let’s make a list of numbers in a new notebook cell. To keep things simple, enter all of the even numbers between zero and ten. Name its variable something plain like my_list. Press play.

my_list = [2, 4, 6, 8]

You can do cool stuff with any list, even calculate advanced statistics, if you’re a skilled Python programmer who is ready and willing to write a big chunk of code. The advantage of pandas is that it saves time by quickly and easily analyzing data with hardly any computer code at all.

In this case, it’s as simple as converting that plain Python list into what pandas calls a Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html]. Here’s how to make it happen in your next cell. Let’s stick with simple variables and name it my_series.

my_series = pd.Series(my_list)

Once the data becomes a Series, you can immediately run a wide range of descriptive statistics [https://en.wikipedia.org/wiki/Descriptive_statistics]. Let’s try a few.

How about summing all the numbers? Make a new cell and run this. It should spit out the total.

my_series.sum()

20

Then find the maximum value in the next.

my_series.max()

8

The minimum value in the next.

my_series.min()

2

How about the average, which also known as the mean?

my_series.mean()

5.0

The median?

my_series.median()

5.0

The standard deviation?

my_series.std()

2.581988897471611

Finally, all of the above, plus a little more about the distribution, in one simple command.

my_series.describe()

count 4.000000
mean 5.000000
std 2.581989
min 2.000000
25% 3.500000
50% 5.000000
75% 6.500000
max 8.000000
dtype: float64

Before you move on, go back to the cell with your my_list variable and change what’s in the list. Maybe add a few more values. Or switch from evens to odds. Then rerun all the cells below it. You’ll see all the statistics update to reflect the different dataset.

If you substituted in a series of 10 million records, your notebook would calculate all those same statistics without you needing to write any more code. Once your data, however large or complex, is imported into pandas, there’s little limit to what you can do to filter, merge, group, aggregate, compute or chart using simple methods like the ones above. In the chapter to come we’ll start doing just using that with data from a real Los Angeles Times investigation.

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

4. Data

In 2018, the Los Angeles Times published an investigation headlined, “The Robinson R44, the world’s best-selling civilian helicopter, has a long history of deadly crashes.” [https://www.latimes.com/projects/la-me-robinson-helicopters/]

[image: jupyterlab desktop download]

It reported that Robinson’s R44 led all major models with the highest fatal accident rate from 2006 to 2016. The analysis was published on GitHub [https://github.com/datadesk/helicopter-accident-analysis] as a series of Jupyter notebooks.

The findings were drawn from two key datasets:

	The National Transportation Safety Board’s Aviation Accident Database [https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx]

	The Federal Aviation Administration’s General Aviation and Part 135 Activity Survey [https://www.faa.gov/data_research/aviation_data_statistics/general_aviation/]

After a significant amount of work gathering and cleaning the source data, the number of accidents for each helicopter model were normalized using the flight hours estimates in the survey. For the purposes of this demonstration, we will read in tidied versions of each file that are ready for analysis.

The data are structured in rows of comma-separated values. This is known as a CSV file [https://en.wikipedia.org/wiki/Comma-separated_values]. It is the most common way you will find data published online. The pandas library is able to read in files from a variety formats, including CSV.

Show code cell content
Hide code cell content

import pandas as pd

4.1. The read_csv method

Scroll down to the first open cell. There we will import the first CSV file using the read_csv [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html] function included with pandas.

pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")

 5. Columns

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

5. Columns

We’ll begin with the latimes_make_and_model column, which records the standardized name of each helicopter that crashed. To access its contents separate from the rest of the DataFrame, append a pair of flat brackets with the column’s name in quotes inside.

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")

accident_list['latimes_make_and_model']

0 BELL 407
1 ROBINSON R22
2 ROBINSON R44
3 ROBINSON R44
4 ROBINSON R44
 ...
158 BELL 407
159 SCHWEIZER 269
160 BELL 206
161 AIRBUS 350
162 ROBINSON R44
Name: latimes_make_and_model, Length: 163, dtype: object

That will list the column out as a Series, just like the ones we created from scratch earlier. Just as we did then, you can now start tacking on additional methods that will analyze the contents of the column.

Note

You can also access columns a second way, like this: accident_list.latimes_make_and_model. This method is quicker to type, but it won’t work if your column has a space in its name. So we’re teaching the universal bracket method instead.

5.1. Count a column’s values

In this case, the column is filled with characters. So we don’t want to calculate statistics like the median and average, as we did before.

There’s another built-in pandas tool that will total up the frequency of values in a column. The method is called value_counts [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.value_counts.html] and it’s just as easy to use as sum, min or max. All you need to do it is add a period after the column name and chain it on the tail end of your cell.

accident_list['latimes_make_and_model'].value_counts()

ROBINSON R44 38
BELL 206 30
AIRBUS 350 29
ROBINSON R22 20
BELL 407 13
HUGHES 369 13
MCDONNELL DOUGLAS 369 6
SCHWEIZER 269 5
AIRBUS 135 4
SIKORSKY 76 2
AGUSTA 109 2
AIRBUS 130 1
Name: latimes_make_and_model, dtype: int64

Congratulations, you’ve made your first finding. With that little line of code, you’ve calculated an important fact: During the period being studied, the Robinson R44 had more fatal accidents than any other helicopter.

5.2. Reset a DataFrame

You may notice that even though the result has two columns, pandas did not return a clean-looking table in the same way as head did for our DataFrame. That’s because our column, a Series, acts a little bit different than the DataFrame created by read_csv. In most instances, you can convert ugly Series into a pretty DataFrame by tacking on the reset_index method on the end.

accident_list['latimes_make_and_model'].value_counts().reset_index()

 6. Filter

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

6. Filter

The most common way to filter a DataFrame is to pass an expression as an “index” that can be used to decide which records should be kept and which discarded. You write the expression by combining a column on your DataFrame with an “operator” like == or > or < and a value to compare against each row.

Note

If you are familiar with writing SQL [https://en.wikipedia.org/wiki/SQL] to manipulate databases, pandas’ filtering system is somewhat similar to a WHERE query. The official pandas documentation [https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#where] offers direct translations between the two.

Let’s try filtering against the state field. Save a postal code into a variable. This will allow us to reuse it later.

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")

my_state = "IA"

In the next cell we will ask pandas to narrow down our list of accidents to just those in the state we’re interested in. We will create a filter expression and place it between two flat brackets following the DataFrame we wish to filter.

accident_list[accident_list['state'] == my_state]

 7. Group

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

7. Group

The groupby [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html] method allows you to group a DataFrame by a column and then calculate a sum, or any other statistic, for each unique value. This functions much like the “pivot table” [https://en.wikipedia.org/wiki/Pivot_table] feature found in most spreadsheets.

Let’s use it to total up the accidents by make and model. You start by passing the field you want to group on to the function.

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")

accident_list.groupby("latimes_make_and_model")

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f179acd11d0>

A nice start but you’ll notice you don’t get much back. The data’s been grouped, but we haven’t chosen what to do with it yet. If we wanted the total by model, we would use the size method.

accident_list.groupby("latimes_make_and_model").size()

latimes_make_and_model
AGUSTA 109 2
AIRBUS 130 1
AIRBUS 135 4
AIRBUS 350 29
BELL 206 30
BELL 407 13
HUGHES 369 13
MCDONNELL DOUGLAS 369 6
ROBINSON R22 20
ROBINSON R44 38
SCHWEIZER 269 5
SIKORSKY 76 2
dtype: int64

The result is much like value_counts, but we’re allowed run to all kinds of statistical operations on the group, like sum, mean and std. For instance, we could sum the total number of fatalities for each maker by stringing that field on the end followed by the statistical method.

accident_list.groupby("latimes_make_and_model")['total_fatalities'].sum()

latimes_make_and_model
AGUSTA 109 5
AIRBUS 130 1
AIRBUS 135 11
AIRBUS 350 81
BELL 206 61
BELL 407 35
HUGHES 369 19
MCDONNELL DOUGLAS 369 7
ROBINSON R22 27
ROBINSON R44 71
SCHWEIZER 269 7
SIKORSKY 76 11
Name: total_fatalities, dtype: int64

Again our data has come back as an ugly Series. To reformat it as a pretty DataFrame use the reset_index method again.

accident_list.groupby("latimes_make_and_model").size().reset_index()

 8. Merge

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

8. Merge

Next we’ll cover how to merge two DataFrames together into a combined table. Before we can do that, we need to read in a second file. We’ll pull faa-survey.csv, which contains annual estimates of how many hours each type of helicopter was in the air. If we merge it with our accident totals, we will be able to calculate an accident rate.

We can read it in the same way as the NTSB accident list, with read_csv.

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().rename(columns={0: "accidents"})

survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/faa-survey.csv")

Before you do anything, take a peek at it with with the head.

survey.head()

 9. Compute

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

9. Compute

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().rename(columns={0: "accidents"})
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")

To calculate an accident rate, we’ll need to create a new column based on the data in other columns, a process sometimes known as “computing.”

In many cases, it’s no more complicated than combining two series using a mathematical operator. That’s true in this case, where our goal is to divide the total number of accidents in each row into the total hours. That can accomplished with the following:

merged_list['accidents'] / merged_list['total_hours']

0 5.522238e-06
1 9.489593e-07
2 4.521838e-06
3 7.467510e-06
4 5.453249e-06
5 6.150096e-06
6 1.081812e-05
7 1.089544e-05
8 6.732180e-06
9 1.610354e-05
10 4.388560e-06
11 2.184563e-06
dtype: float64

The resulting series can be added to your dataframe by assigning it to a new column. You name your column by providing it as a quoted string inside of flat brackets. Let’s call this column something brief and clear like per_hour.

merged_list['per_hour'] = merged_list['accidents'] / merged_list['total_hours']

Which, like everything else, you can inspect with the head command.

merged_list.head()

 10. Sort

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

10. Sort

Another simple but common technique for analyzing data is sorting. This can be useful for ranking the DataFrame to show the first and last members of the table according to a particular column.

Show code cell content
Hide code cell content

import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby("latimes_make_and_model").size().reset_index().rename(columns={0: "accidents"})
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")
merged_list['per_hour'] = merged_list.accidents / merged_list.total_hours
merged_list['per_100k_hours'] = (merged_list.accidents / merged_list.total_hours) * 100_000

The sort_values [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html] method is how pandas does it. It expects that you provide it with the name of the column to sort by in quotes. Try sorting by our computed field.

merged_list.sort_values("per_100k_hours")

 11. Charts

 palewire

 	

 Posts

 	

 Work

 	

 Talks

 	

 Docs

 	

 About

11. Charts

Python has a number of charting tools that can work hand-in-hand with pandas. While Altair [https://altair-viz.github.io/] is a relative newbie compared to veterans like matplotlib [https://matplotlib.org/], it’s got great documentation and is easy to configure. Let’s take it for a spin.

11.1. Make a basic bar chart

Head back to the import cell at the top of your notebook and add Altair. In the tradition of pandas, we’ll import it with the alias alt to reduce how much we need to type later on.

Show code cell content
Hide code cell content

import warnings
warnings.simplefilter('ignore')
import pandas as pd
accident_list = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/ntsb-accidents.csv")
accident_counts = accident_list.groupby(["latimes_make", "latimes_make_and_model"]).size().rename("accidents").reset_index()
survey = pd.read_csv("https://raw.githubusercontent.com/palewire/first-python-notebook/main/docs/src/_static/faa-survey.csv")
merged_list = pd.merge(accident_counts, survey, on="latimes_make_and_model")
merged_list['per_hour'] = merged_list.accidents / merged_list.total_hours
merged_list['per_100k_hours'] = (merged_list.accidents / merged_list.total_hours) * 100_000

import altair as alt

Once that’s run, we can pick up where we last left off at the bottom of the notebook. Let’s try to plot our accident rate ranking as a bar chart.

With Altair imported, we can now feed it our DataFrame to start charting. Let’s take a look at the basic building block of an Altair chart: the Chart object. We’ll tell it that we want to create a chart from merged_list by passing the dataframe in, like so:

alt.Chart(merged_list)

SchemaValidationError Traceback (most recent call last)
~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/site-packages/altair/vegalite/v5/api.py in to_dict(self, *args, **kwargs)
 2518 copy.data = core.InlineData(values=[{}])
 2519 return super(Chart, copy).to_dict(*args, **kwargs)
-> 2520 return super().to_dict(*args, **kwargs)
 2521
 2522 def add_params(self, *params) -> Self:

~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/site-packages/altair/vegalite/v5/api.py in to_dict(self, *args, **kwargs)
 848 # but due to how Altair is set up this should hold.
 849 # Too complex to type hint right now
--> 850 dct = super(TopLevelMixin, copy).to_dict(*args, **kwargs) # type: ignore[misc]
 851
 852 # TODO: following entries are added after validation. Should they be validated?

~/checkouts/readthedocs.org/user_builds/first-python-notebook/envs/stable/lib/python3.7/site-packages/altair/utils/schemapi.py in to_dict(self, validate, ignore, context)
 812 # show the less helpful ValidationError instead of
 813 # the more user friendly SchemaValidationError
--> 814 raise SchemaValidationError(self, err) from None
 815 return result
 816

SchemaValidationError: '{'data': {'name': 'data-45403fa9afde868a6cd19a10672afb20'}}' is an invalid value.

'mark'